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Tools, methods, and theories for asseSSing and quantifying uncertainties vary by 
application. Uncertainty quantification tasks have unique desiderata and circumstances. 
To realistically assess uncertainty requires the engineer/scientist to specify 
mathematical models, the physical phenomena of interest, and the theory or framework 
for assessments. For example, Probabilistic Risk Assessment (PRA) specifically 
identifies uncertainties using probability theory, and therefore, PRA's lack formal 
procedures for quantifying uncertainties that are not probabilistic. The Phenomena 
Identification and Ranking Technique (PlAT) proceeds by ranking phenomena using 
scoring criteria that results in linguistic descriptors, such as importance ranked with 
words, "High/Medium/Low." The use of words allows PlAT to be flexible, but the 
analysis may then be difficult to combine with other uncertainty theories. We propose 
that a necessary step for the development of a procedure or protocol for uncertainty 
quantification (UQ) is the application of an Uncertainty Inventory. An Uncertainty 
Inventory should be considered and performed in the earliest stages of UQ. 
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I. Introduction 

We have adopted the following operational definition: 

Uncertainty Inventory is an organized set of al l the information, statements, 
and questions relating to the different kinds of uncertainties in a given 
problem/application . The Uncertai nty Inventory includes choices, such as 
which uncertainty mathematical theory(ies) is (are) appropriate for 
characterizing each uncertainty, and what data/information/knowledge 
characterize each uncertainty. The format of the Uncertainty Inventory could 
range in complexity from a list or table , to an interactive, relational knowledge 
base. 

The above definition refe rs to different kinds of uncertainties. Examples of these are: 
• Physically random error or aleatoric or irreducible uncertainty 
• Probabilistic uncertainty (uncertainty of outcome of event) 
• Prediction uncertainty (what is to be learned or inferred, what happens next, or what 

is the goal of an experiment) 
• Scatter or dispersion in the data, or variance uncertainty 
• Parameter uncertainty (from a model , including a chosen probability density function 

or PDF) 
• Ambiguity uncertainty of physical cause or phenomena 
• Threshold uncertainty (determining cut-off values, specifications, margins or 

boundary conditions) 
• Statistical inference uncertainty (i nferring information regarding the whole 

population from a sample or subset of observations, tests, or experiments) 
• Vagueness of definitions, quality of science/scientistienvironment 
• Scaling, or scaled inference or similarity of phenomena uncertainty 
• Model uncertainties due to assumptions, simplifications, model-form 
• Epistemic or lack-of-knowledge uncertainty 
• Linguistic uncertainty (e.g. do physicists and engineers use the same vocabulary) 
• Measurement or instrument uncertainty (e.g. which is the target of investigation, 

which is the diagnostic, which are the driving forces, which is the recording device) 
• Model parameter uncertainty (includes computer models, model-form uncertainty, 

physical , statistical, and mathematical models, operator-split models) 
• Misclassification uncertainty (e .g. , Zadeh fuzzy sets) 
• Imprecision and inaccuracy uncertainty 
• Non-specificity uncertainty (arising from lack of specific information). 

Some authors, (e.g. Ayyub and McCuen, 1997) assert that uncertainties in engineering 
systems can be categorized according to whether or not they are mind-based 
abstractions of real ity. We have found that such sub-categorization of uncertainties is 
not entirely helpful, but the practical goal of considering which mathematical theories 
are relevant is helpful. The uncertainty inventory serves several purposes and goals: 

1. Provides a traceable , updatable record of the UQ 
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2. Provides the seed of a protocol ; adherence to protocol establishes scientific 
quality and experimental qual ity, such as reproducibi lity 

3. Permits different levels of information content, e.g., coarse versus detail, system
level versus component, complex-structure versus simpli fied 

4. Aids in determining the nature of the Total Uncertainty (see Ross, 2003) for the 
problem 

5. Provides the information necessary for decision making, certification, validation, 
risk/reliabil ity estimation and other assessment conclusions 

6. Accommodates multiple quantities of interest, their predictor variables, and other 
ancillary quantities-a multivariate structure 

7. Permits numeric quantities, ordinal quantities, and even qualitative information 
(e.g. , linguistic information) 

8. Aids in determining which uncertainties are the most influential on the answer 
and, hence, which are worth the cost to obtain more data/information for 
uncertainty reduction 

9. Provides a "learn by doing" environment, where weaknesses and strengths can 
be identified in the UQ process 

10. Becomes a resource of knowledge and information that can evolve as new 
information becomes available or as things change . The person evaluating 
uncertainty should not need to be expert in both (for example) statistics and 
computational fluid dynamics, but be facile in how these topics are interacting. 

Item 3 refers to the content of information contained within the recorded material in the 
inventory. Continuous variables, measurements, quantities, responses, have the most 
information content and have the highest quality. The minimum information content is 
captu red wi th words. Words (linguistics) have the greatest flexibility, but can be the 
most difficult to analyze. While scientific practitioners prefer to Il ave numeric data from 
tests, experiments or observation , there is valuable information content in the linguistic 
information recorded from observation or experience . When tests become too difficult 
or expensive (or illegal) to perform, the practitioner must take advantage of all available 
information, including that contained in expert's statements. 

Information content can be ordinal (ordered) in nature, as part of quantification. Traffic 
light colors indicating ordering of good (green), medium (yellow) and bad (red) are 
commonly used (e.g. , Zang et aI., 2008). The Phenomena Identification and Ranking 
Technique (PIRT) importance is often rated using a three- level ordinal scale of High (H), 
Medium (M) and Low (L), and the knowledge level is rated using Known (K), partially 
known (P) and Unknown (U) (Diamond, 2006). 

In addition to the form of the information (numbers versus words), the resolution or 
granularity of the information is also important in determining uncertainties and doing 
analysis. For example, in reliability assessment, counting the number of successes or 
fai lures is a coarser quantification Ulan measuring quanti ties relating to fai lures such as 
strain. The courser counting can mask subtle details of the fai lure mechanics, and it 
presumes that we can "define failure" , (e .g., Wahl, I., 2006) which is the subject of 
considerable ambiguity. -
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Item 9 is a common benefit of Probabilistic Risk Analysis (PRA). The remaining items 
re late to the benefits of having an inventory. 

To achieve these goal and benefit of uncertainty quantification , a thorough, logical and 
organized effort is requi red for determining the fundamental elements of an uncertainty 
inventory. 

Some examples follow: 

A. Source(s) of Inference Uncertainty (IU): are the observed phenomena the 
same, similar, or different than what is desired to be known? The answer to 
this question often involves making an inference, with attendant uncertainty 
(Langenbrunner et al. 2008). 

B. Which theory(ies) are applicable for the quantification of the uncertainty and 
to what degree are they applicable (see GIT list below)? For example, an 
experimental data set may be sparse, with a sample size of less than 
approximately 30. 

C. Which assumptions and/or conditions and/or caveats are required or 
necessary to inte rpret an experiment, to interpret simulation results (e.g. 
which assumpti ons involve model-form uncertainty)? 

D. Val idation of a computer code may invoke uncertainty by affecting accuracy 
(bias or off-target center) or precision (wide or narrow scatter). Validation 
experiments may involve uncertain diagnostic dynamic range, bandwidth, or 
all of the above. 

E. Does categorization of uncertainty into reducible or irreducible components 
help the researcher? Does more knowledge, data, theory, information reduce 
the uncertainty in a computer code, or in an experiment? 

F. What is the name or type of uncertainty, e.g. , is precision confused with 
accuracy? 

G. Does the re lative importance for solutions change with time (e.g., traffic light 
or PIRT scale) . Is the initi al assessment evolving with respect to other 
elements, or with additional data, models and simulations? 

H. What level of quantification is possible: are the observables continuous 
numeric, ordinal , or qualitative only? 

L Does necessary data or information exist (expertise, tests, observables, 
calculations, history)? 

J. Which data, calculations, models, simulations and variables may become 
available later? 

K. Do similar applications (or historical appl ication) with data and/or calculations 
exist? Can these applications be appl ied to the present problem? 

There are many mathematical theories that may provide appropriate characterization 
of the different kinds of uncertainties listed above, and these should be considered 
and tabulated as part of the Uncertainty Inventory. These theories can be 
collectively referred to using the title from George Klir's book (1998) , General 
Information Theories or GIT. A partial list of uncertainty quantification techniques 
includes: 
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• Probabil ity Theory (PT) 
• Zadeh Fuzzy Sets and Logic Theory (ZF) 
• Possibi lity Theory (POST) 
• Dempster-Shafer Evidence Theory (DS) 
• Imprecise Probabil ity Theory (IPT) 
• Random Intervals (RI ) 
• Concentration-of-measure inequalities (COM), (Lucas et aI., 2008) 

II. Granularity and Vagueness in Expert Elicitation 

Before proceeding to the notional example sections that illustrate the construction and 
value of an uncertainty inventory, we reflect on importance of the use of expert 
el icitation for PIRT scales. PIRT scales call attention to one of the above GITs, Zadeh 
fuzzy sets (ZF) (Zadeh, 1965). In elicitation, Meyer & Booker (2001) found that 
technical/professional experts are comfortable with using a continuous scale compared 
to a discrete scale, such as the traffic light H, M, L or K, P, U scales in PIRT (e.g. , 
Diamond, 2006). Figure 1 shows such a scale used in their studies, accompanied by 
the traffic-light gradient where green is Low, yellow is Medium and red is High. The 
scale in Figure 1 is listed as a numeric percentage, but this could have been labeled 
using an ordinal scale where the left end represents no importance and the right end 
represents complete or highest importance. The choice of labels depends upon the 
phenomena being considered and the community of practice of the experts. 
Community of practice is a te rm from Quinn and Holland (1 987), referring to people's 
customs, artifacts, oral traditions, what they know to act as they do, and how they 
interpret their experience in a distinctive way. Most scientists and engineers are 
numerical thinkers and prefer a number line. However, there are some cases (e.g ., 
using the seismic scale) where a log or order of magnitude scale is appropriate because 
that coincides with how the experts think. 

0% lob% 

Figure 1. Continuous PIRT importance scale as an alternative to H, M, and L sets. 

Presenting experts with a continuous line, ordinal or numeric, and asking them to mark 
their answer (along with an uncertai nty range) gives them flexibility and produces a finer 
level of detail in their answers. Recall that understanding the granularity, coarseness or 
level of detail is a key featured item in the uncertai nty inventory. The continuous scale 
can be regarded as a crisp solution, because it avoids the fuzzy boundaries between 
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the discrete sets of H, M and L. An expert or decision maker may not want to crisply 
classify their answers into just those th ree choices (or sets), preferring instead some 
mixture in-between them. Such difficulty in deciding where the boundaries are between 
the 3 choices, or fuzziness, is the uncertainty due to classification and emerges from the 
limited choices presented (in this case H, M or L) and/or from a lack of definition 
associated with those choices. The continuous scale avoids the difficulty of deciding 
between a limited number of choices, especially if exact, precise definitions among the 
choices are not provided or practical. The uncertainty caused by the lack of good 
definitions can be reduced to a negligible level by providing them. The uncertainty of 
classification is more of a problem for some experts than for others. Bias is induced 
when the expert having this problem is forced to choose only one of the three answers. 

Figure 2 shows how three different expe rts would use the continuous importance scale 
in PIRT. Their estimates are li sted with A, B, and C. Experts were also asked to 
provide a range along with their answer, and these ranges are in the brackets. 

c 

0% 

[ B 
[ A ] 

100% 
Figure 2. Three experts provided answers A, B, and C along with ranges (in brackets) on 
the continuous importance scale in PIRT. 

In constructing an uncertainty inventory, one would want to include the uncertainty in 
the brackets provided by the experts. That uncertainty in the experts' minds about what 
the value of importance should be could be characterized using PT, POST, RI or IPT. 
Another alternative to using the continuous line using ZF follows. 

Whenever linguistic terms are used as a response, like H, M, L, the uncertainty of 
classificati on emerges. There may be no exact interpretation of H, M, and L in a PIRT 
evaluation , making this a prime example for the use of fuzzy membership functions. 
When a PIRT decision is made to label a phenomenon as either H, M or L, especially in 
a Probabilistic Risk Analysis (PRA), there is no option to decide on something in
between those three. Zadeh fuzzy sets (1 965), allows one to quantify supplied 
responses (descriptions) like: 

Expert A: "Well, this is mostly H, and little bit M." 
Expert B: ''This is definitely an H." 
Expert C: "Gads, this is somewhat H and somewhat M. I cannot decide which." 

Fuzzy membership functions are designed to handle these kinds of statements from 
experts. Figure 3 shows a simple construction of membership functions for the fuzzy 
sets of H, M, and L. 
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Figure 3. Membership functions of importance fuzzy sets for L, M, and H. 

Instead of the three experts providing their answers and ranges on the continuous line 
in Figure 2. they use the fuzzy membership functions and indicate where their answers 
lie. The vertical lines in Figure 4 indicate their choices. The degree of membership in 
the three fuzzy sets for each expert is given in Table 1. 

Low 
1.0 r----~ 

O.S 

0.0 I 1/ 
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I 
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0% (NONE ) 
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j = \ 

I \ 
I \ I 
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, , 
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81 
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Figure 4. Three experts quantifying their linguistic statements using fuzzy membership 
functions for importance. 
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T bl 1 0 a e . f b h' in each fuzzy set for three experts egree 0 mem ers Ip 

EXPERT JlH J.1M ~ 

A 0.8 0.2 0.0 

B 1.0 0.0 0.0 

C 0.5 0.5 0.0 
I 

The uncertainty in classifying their responses among the three choices of H, M, and Lis 
now quantified in the degree of membership in Table 1. 

Description of ZF and its uses are beyond the scope of this paper, however the use of 
scales during expert elici tation il lustrates how easily the uncertainty of classification can 
emerge in the most common situations, i.e ., using a PIRT scale. It also shows how 
easily sources of uncertainty can be discovered when performing an uncertainty 
inventory. 

III. Notional Example: Explosive causing failure in-flight 

We have created a simplified example to demonstrate an uncertainty inventory, in the 
form of a list. The objective of the notional example is to aid the decision maker to make 
decisions regarding how the airline industry can prevent passengers from taking 
explosives on board. In th is example, the path forward is decided that the 
SCientist/engineers (experts) quantify the amount of explosive which must be detected 
(or a lower value for the threshold-for-detection) before passengers board an aircraft. 
The experts begin by analyzing the consequence of explosions, specifically that which 
causes airplane failure in-flight. How shall the experts then quantify the uncertainty in 
this problem? This problem is not entirely suited to a PRA because of the lack of 
knowledge and sparseness of data, the difficulty (ambiguity) of determining threshold 
values for amount of explosives needed to cause different degrees of damage, the 
heavy reliance on expert knowledge in linguistic form, the inability of most 
computational codes to model complex boundary conditions, the poorly known behavior 
of heterogeneous material properties under dynamic, three-dimensional states of 
loading, and the non-specificity in defining such states as "failure" , or "severe damage" 
or "safe". 

One powerful tool in use by the Nuclear Regulatory Commission (NRC) for uncertainty 
quantification is the Phenomena Identification and Ranking Technique (PIRT). It is a 
method that can be used to identify important parameters in a problem (including 
computer model parameters) to support a specific decision objective. The methodology 
is meant to identi fy all phenomena, as well as rank the most important, using the 
process of expert elicitation (Meyer and Booker, 2001). If a phenomenon is identified as 
being important, it is also ranked for its corresponding knowledge level. For example, if 
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a phenomenon is ranked with "High (H)" importance and knowledge is "Partial (P)" or 
"Uncertain (U)" , then, the Nuclear Regulatory Commission has determined the 
simultaneous presence of these criteria warrants research, as in the table below, 
(Diamond, 2006). If the phenomenon is known (K), research is not necessarily 
warranted. 

Table 2. as in Diamond (2006). 

Importance Importance Importance 

Phenomenon High (H) Medium (M) Low (L) 

Knowredge level K No research No research No research 

Knowledge level P More research No research No research 

Knowledge level U More research More research No research 

In this notional example, it is decided that one objective is to determine the smallest 
amount of explosive detonated inside an aircraft that will cause catastrophic damage. 
The uncertainty inventory process starts by listing phenomena that affect the desired 
result (catastrophic damage measure). The phenomena can be assumptions, 
parameters, boundary conditions etc. Rivet and material failure models in the aircraft 
simulation are two relevant examples. 

In the case of a phenomena that is considered to have high importance, but partial 
knowledge, (e.g. failure criterion in Table 3 below), more research should be conducted 
and resources invested to reduce the uncertainty and thus obtain reduced uncertainty in 
the result. If more research cannot be done, the next step is to quantify our knowledge 
of uncertainty, in lieu of gathering more experiments or simulation-based data. For 
example, certain types of testing may be illegal or undesirable or impossible, such as 
full-scale testing of nuclear weapons, full-scale test of a building during an actual 
earthquake, or full-scale testing of explosives during flight. 

Depending on the type of uncertainty, expert knowledge can be compiled or computer 
model simulation results can be analyzed to rate the level of importance for each 
phenomenon. The level of uncertainty can be based on expert knowledge or can be 
expressed as a mean and standard deviation (we are using PT at this point) derived 
from model runs, where the model input uncertainty is propagated through the model. 
In order to more fully understand the process, an example uncertainty inventory table is 
shown below. Table 3 is analogous to the many techniques used in enumerating and 
assessing risks and/or failures in PRA and PIRT. This idea of organization is not new, 
but the information contained in the columns and rows is new, because it is designed for 
an uncertainty inventory. 

The uncertainty inventory for our notional example includes a column for phenomena 
and uncertainty sources, a column for an appropriate uncertainty theory, a column for a 
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proposed approach to the uncertainty, and a column each for importance / uncertainty 
level. The appropriate uncertainty theory or approach may include Expert Knowledge, 
(EK), Calculation-to-Calculation comparison (C-C), Calculation to Experiment 
comparison, (C-E), or Experiment-to-Experiment (E-E) comparison. Note that the 
column for Knowledge Level has in its designation a measure of its uncertainty. The 
Importance level may be uncertain as well, and a column could be incorporated to 
capture that uncertainty. The key to the abbreviations in the column for "level of 
quantification possible" is CN (Continuous Numeric); QO (Quali tati ve Ordering). 

Table 3. Notional Example Uncertainty Inventory (Explosive detonated in an Aircraft) 
Phenomenon or 
Source of Uncertainty 

Symmetry effects, 3-D effects 
Boundary conditions (Simulation) 
Failure criterion 
Yield I hardening material model 
Physics not modeled 
Measurement Error 
Device Variability 
Modeling parameters 
Failure behavior in fracture 
Explosive types 
Similarity wI historical events 
Flight loads 
Temperature effect 
Strain rate effect 
Mismatch of Data wI Calculation 

Ambigu ity, POST 
Vagueness, IPT 
IU, Am biguity, ZF 
Ambiguity, ZF, PT 
POST, PT, IPT, ZF 

PT 
IPT, ZF 

Ambiguity, PT, IPT 
Vagueness, POST 

IU, ZF, PT 
PT, IPT, POST, ZF 

Vagueness, ZF 
IU, Ambigu ity 

Ambiguity, IPT 
IU, Ambiguity, IPT 

.c"":' 
0 0 
CI:I '-
e~~ 
0.....:.0 
o.~ -<w -
EK, C-C 
EK, C-C 

EK 
EK 

EK, C-C 
C-E 
C-E 

EK, C-C 
EK, C-E 
E-E, C-C 

C-C 
EK, C-C 

EK 
EK, C-C 
EK, C-E 

CI>= tna. 
'0 
.!~ 
:f:
o § 
C Go 
~-

P 
P 

P 

K 
U 
P 
P 
K 
P 
P 
P 
P 
K 
P 
P 

M 
M 
H 
M 
M 
M 
H 
M 
L 
M 
H 
H 
L 
M 
H 

aO/CN 
aO/CN 

ao 
aO/CN 
aO/CN 

CN 
aO/CN 

CN 
aO/CN 
aO/CN 
aO/CN 
aO/CN 

CN 
aO/CN 
aO/CN 

For example, there is IU when the desired quantity is the explosive effect on the 
passengers in the airplane. Detailed knowledge of how human passengers are affected 
by such an explosion could presumably make the issue of airplane damage moot. This 
uncertainty includes the inference uncertainty of testi ng explosive effects on humans 
compared to animals, an uncertainty shared in common with the prescriptive drug 
industry. There exists data for similar applications, however, such as the effects of 
explosives on humans in the confines of military veh icles. Using that data would 
introduce "inference of similarity" uncertainty. Table 3 is analogous to the many 
techniques used in enumerating and assessing risks and/or failures in PRA and PIRT. 
Additionally, knowledge of uncertainty can be integrated, using expert elicitation, and 
other techniques, as indicated below. The reader should keep in mind that inventories 
change, and Table 3 is meant as a notional example, only. 
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IV. Quantifying Uncertainty for Notional Example of Explosive 
causing failure in-flight 

It is evident from Table 3 that a key feature in quantifying and reducing the uncertainties 
in the notional example is the appropriate use of expert knowledge (EK). There exists 
modeling expertise, explosive expertise and aeronautics expertise, but few experts 
employ experience in all of these areas simultaneously. This is because there is sparse 
data for explosives detonating in-flight on civilian airlines. We submit that this restricts 
the application of Probability Theory (PT) or a PRA for this example, unless there would 
be a method of casting the inference uncertainty into PT. How then can the uncertainty 
inventory in Table 3 aid the decision maker, or the engineer/scientist? 

Knowledge from expertise and experience within a single field can provide judgments 
needed for a sparse-data problem. For example, an explosives expert is clearly relevant 
in our notional example, even if they have no aeronautics experience. Such an expert 
can make a quantitative assessment of prediction errors of an explosives computer 
code. What we are describing is the collection and utilization of all sources of data and 
information to aid in quantification of uncertainties, especially for data-sparse examples. 
We call this process Information Integration, (Booker, Bement, Meyer, Kerscher, 2003) 
and it begins by accumulating the information from all the sources for organization in a 
knowledge base. An uncertainty inventory is an example of the knowledge base. 

Langenbrunner, Booker, Hemez, and Ross (2008) , using a "4-box approach", made a 
simple demonstration of the information integration technique. The notional example, 
using the 4-box techniques can be illustrated in Figure 5. Those authors combined 
several types of uncertainty using expert elicitation. The top row of boxes represent 
physically-relevant experimental data, the green box represents physics-validation 
experiments, the red box represents actual airplanes-in-fl ight with explosive events. The 
bottom row of boxes represents code calculations or simulations. The blue box 
represents small-scale simulations, producing probabi li ty of failure. Failure is defined by 
criteria applied to the output the simulations, in terms of a threshold of one or many 
terms. The gold box represents fu ll -scale airplane simulations. 

The boxes on the left are called "data-rich" and those on the right are "data-sparse." 
The contents of boxes on the right-hand side of Figure 5 can be likened to the 
phenomena and uncertainty sources in Table 3. The physiCS experiments data box 
(green) and the ful l-scale explosions data box (red) can contain similar data, except that 
the physics experiments are routine or data-rich , and the full-scale airplane data are 
sparse. The example shown in Figure 5 assumes that the small-scale tests are a data
rich application and the full-scale explosions represent a data-sparse application. The 4-
box technique consti tutes construction of the knowledge base, just as does the 
uncertainty inventory. 

By considering the full-scale explosions alone, uncertainties in failure criteria may be 
unnecessarily inflated because of inference uncertainty. By considering the small-scale 
experiments alone, the failure criteria may be too narrow. Scaling constants, from small
scale to full-scale experiments can be difficult to determine. The observables have 
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measurement errors. The functional forms of models may admit additional inference 
uncertainty. These issues are part of the uncertainty inventory. 
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Figure 5, Example of the "four-box" technique, as applied to an explosive event in an 
airplane example. 

T bl 4 C a e ompansons be r f tween two app Icatlons or tests an d d ( co es see F' ) Ig.5 . 

Arrow Type of Comparison Comparison Conveys Information About : 

A Calc-to-Expt. (C-E) Common modeling and/or bad observables 
B Calc-to-Expt (C-E) Common modeling 
D Calc-to-Expt (C-E) Physics or theory not modeled 
E Calc-to-Calc (C-G) Common physics modeled 
F Calc-to-Expt (C-E) Physics or theory not modeled 
G Expt. -to-Expt (E-E) Repeatability through similari ty 

Returning to the uncertainty inventory, the reader wil l note that the column deSignated 
"Approach" has Calculation-to-Calculation comparison (C-C), Calculation to Experiment 
comparison, (C-E), or Experiment-to-Experiment (E-E). These comparisons can be 
seen in the 4-box technique in Figure 5 indicated by the double-sided arrows. The 
experiments (boxes in the top row) have physics in common denoted by arrow G. The 
two boxes in the bottom row have computer code models in common denoted by arrow 
E. A simplistic summary of the arrows is listed in Table 4. 
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One way to quantify these comparisons is to apply a goodness-of-fit metric of test
analysis correlation (e.g., the ON metric, Langenbrunner, Booker, Hemez, Ross, 2007) 
to the observables. This particular metric permits the specification of three kinds of 
uncertainties which can be expressed as variances (using PT) . Another way to quantify 
these comparisons is to establish a scoring scheme based upon counting the degree of 
and nature of similarities. These techniques are the subjects of future research. 

v. Summary 

The authors have given an operati onal definition of an Uncertainty Inventory, and 
offered a notional example. An Uncertainty Inventory is a set of all the statements that 
are questions relating to uncertainty. The Uncertainty Inventory is a part of the 
knowledge base of problems in uncertainty quantification. Part of the inventory is an 
assessment of what uncertainty mathematical theory appears most appropriate, and/or 
an approach to quantifying the uncertai nty. Expert knowledge can be used to quantify 
uncertainties of differing types. One method, the 4-box technique, can help organize 
pair-wise comparisons of uncertainties in phenomena. This is important for scenarios 
where decisions must be made under severe uncertainty about data-sparse 
applications. 
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